CMS: ELECTRONICS BOARD REPLACEMENT INSTRUCTIONS

1. WARNING! - To prevent accidental injury or death, lockout all related electrical and mechanical equipment, including power sources, before servicing the CMS control.

Figure 1: Cover Removal

2. Unscrew the CMS cover in a counter-clockwise direction, and set aside.

3. Disconnect the wires, and note or label what each wire is and what terminal each wire connects to.

4. Unscrew the 4 machine screws that hold the electronics board to the standoffs.

Figure 2: Old Board Removal

5. Remove the electronics board.
6. Place the new electronics board in the same place as the old board.

7. Replace the 4 machine screws and toothed lockwashers.

8. Re-connect the wires to their terminals on the new electronics board. Refer to CMS Installation Instructions I0200001 revision C or later for wiring and setup information.

9. Replace wiring diagram inside cover.

10. Replace the cover by screwing it onto the base in a clockwise direction.
WARNING:
DEATH or SERIOUS INJURY may occur.
Before installing or adjusting, shut down and physically lock-out the conveyor system.
A. INTRODUCTION

1. USAGE

The model CMS motion sensing control is a compact switch designed to include all mechanical and electronic components into a single housing. It will produce an output signal at a predetermined speed which may be over-speed, under-speed or zero-speed. Rugged, heavy-duty construction combined with solid state electronics and photo-electric technology makes this one of the most advanced motion detectors available. Model CMS protects all valuable rotating equipment including belt conveyors, bucket elevators, rotary feeders or screw conveyors. It operates in a clockwise or counter-clockwise direction and mounts in any position.

2. HOW IT OPERATES

The model CMS senses motion by means of a precision metal disc mounted on the input shaft. This disc generates measurable light pulses by a series of slots on its periphery, which rotate past an infrared light source. A photo-electric sensor monitors the series of light pulses and converts them to digital electronic signals. Solid state circuitry then analyzes the digital signals and activates or de-activates the output relay at the pre-set speed.

Field adjustment of the signal set point is easily accomplished by means of an adjustment screw on the electronics. For under-speed sensing, the signal point is set below the normal operating speed of the unit. The output relay will then de-energize if the speed drops below the signal point. For over-speed sensing, the pick-up point is set above the normal operating speed. The output relay will energize if the speed exceeds the pick-up point. Zero-speed sensing can be accomplished by turning the adjustment screw to its minimum setting. The output relay will then de-energize when the shaft speed of the unit approaches zero.
B. SPECIFICATIONS

1. ELECTRICAL

Input Voltage:
- 105-135 volts AC, 50/60 Hz.
- 210-250 volts AC, 50/60 Hz. (Special Order)
- 24 volts AC/DC, 50/60 Hz. (Special Order)

Output:
- DPDT relay to 3 Amp. Resistive at 120 volts AC
- DPDT relay to 3 Amp. Resistive at 240 volts AC
- DPDT relay to 3 Amp. Resistive at 30 volts DC
- 1/10 Horsepower at 120 volts AC
- 1/10 Horsepower at 240 volts AC

Operating Temperature Range: -50° F to +131° F (-46°C to +55°C)

Repeatability: +2% maximum at constant voltage and temperature.

Power Consumption: 3 Watts

Pick-up Point:
3 speed ranges at which relay will energize:
- LOW: 0.1 to 10 RPM
- MEDIUM: 1 to 100 RPM
- HIGH: 10 to 1000 RPM

Signal Point:
Speed at which relay will de-energize. Recommended to be 15-20% lower than pick-up point to eliminate nuisance shutdowns.

Start-up Delay: Adjustable up to 45 seconds.

2. MECHANICAL

Radial Load on Input Shaft: 125 lb (56.25 kg) Maximum.

End Thrust on Input Shaft: 100 lb (45 kg) Maximum.

Rotation: Either clockwise or counter-clockwise

Driving Torque: 1”/lb (0.11 N*m) maximum.

Shaft: 5/8” (16 mm) diameter w/ 3/16” x 7/8” (5 x 22 mm) key

Enclosure: Aluminum w/screw cover

Meets:
- CMS-G: NEMA Types 3S, 4 & 4X
- CMS-X: NEMA Types 3S, 4 & 4X
- NEMA Type 7: Class I groups C & D
- NEMA Type 9: Class II groups F & G
- 120 VAC units UL & CSA Listed

Bearings: Ball, permanently lubricated and sealed for life.

Shaft Seal: Leather type oil seal.

Weight: 5 lb (2.25 kg)

Size: 5” high x 5” wide x 8-1/2” long (127 x 127 x 216 mm)
C. INSTALLATION

1. LOCATION & MOUNTING

The model CMS motion switch can be mounted for operation in any position. The surface to which the switch is affixed should be as flat and as smooth as possible. Bearing brackets and shim plate sets (models 311, 312, 313) can be used to mount the unit directly to the pillow block supporting a shaft. On installations where vibration conditions are not extreme, use ¼” (6 mm) diameter machine bolts with lock washers through the four mounting holes in the base of the switch. Mounting bolts and lock washers are not furnished with the switch. If vibration conditions are extreme, use of a doweling is recommended through two mounting holes in the switch base. The switch should be mounted as axially in line, and/or parallel as possible to the existing shaft, which is to drive the switch. The model CMS motion switch can be driven by one of the following means:

FIGURE 1: Suggested Coupling Arrangement, side view. Direct connection through a coupling (preferred means). Note: Switch should be concentric with the mating shaft. If Stub is used, it must be concentric with the main shaft. If a stub shaft is required, we suggest the use of a 5/8” (16 mm) stub shaft. Use with a split or flexible type coupling.

FIGURE 2: Cog Belt Drive (timing) or Roller Chain Drive: A V-Belt drive is not as desirable because of possible slippage.
2. WIRING

Note: TWIST WIRES TOGETHER BEFORE INSERTING IN TERMINAL (ENROULEZ LES FILS ENSEMBLE AVANT LES INTRODUIRE DANS LA BORNE.).

FIGURE 3: Suggested Spur Gear Arrangement (top view)

FIGURE 4: Electronics View
Remove end cap to expose terminals and pick-up speed adjustment screw. Wire input power from source to terminals L1 & L2. Be certain to use the provided ground screw. The output of the model CMS is a DP/DT relay. There are two sets of output contacts. Each set includes normally open, normally closed and common. As a result, the unit can be used to control two separate circuits such as a motor starter and a signal light.

3. CONDUIT INSTALLATION:

Use only hubs of suitable sizes that are UL/CSA approved for WATERTIGHT use. Install per the hub manufacturer’s instructions. Be sure the location selected will provide adequate wire bending space.

4. SIGNAL SET POINT

FOR USE AS UNDERSPEED SWITCH:

Select the speed range required by changing the switch to LOW for 0.1 to 10 RPM, MEDIUM for 1 to 100 RPM and HIGH for 10 to 1000 RPM. Turn the set point potentiometer to the counter-clockwise stop. With motion present on the input shaft and at normal operating RPM, the yellow L.E.D. should blink. The green L.E.D. should turn on indicating that the output relay is energizing. Slowly turn the set point adjustment screw clockwise until the output relay de-energizes and the green L.E.D. turns off. (A “click” will occur at this point.) Back up until the output relay energizes. Thus, when speed drops below the set point, the green L.E.D. should turn off indicating that the output relay is de-energized. NOTE: Typically, the motor contact is wired in series with one of the N.O. output contacts and an alarm is wired with one of the N.C. output contacts.

FOR USE AS OVERSPEED SWITCH:

Select the speed range required by changing the switch to LOW for 0.1 to 10 RPM, MEDIUM for 1 to 100 RPM and HIGH for 10 to 1000 RPM. Turn the set point potentiometer to the counter-clockwise stop. With motion present on the input shaft and at normal operating RPM, the yellow L.E.D. should blink. The green L.E.D. should turn on indicating that the output relay is energized. Slowly turn the set point adjustment screw clockwise until the output relay de-energizes and the green L.E.D. turns off. (A “click” will occur at this point.) With the potentiometer on that setting, if the speed increases the output relay will energize. NOTE: Typically, the motor contact is wired in series with one of the N.O. output contacts and an alarm is wired with one of the N.C. output contacts.

FOR USE AS A ZERO SPEED SWITCH:

Select the LOW speed range by changing the switch to LOW for 0.1 to 10 RPM. Turn the set point potentiometer to the counter-clockwise stop. This will give a set point of 0.1 RPM. Thus, when the speed drops below 0.1 RPM, the output relay will de-energize. NOTE: Wiring should be the same as for under-speed applications.

5. TIME DELAY SETTING

The model CMS motion sensing control has a start-up delay that is adjustable up to 45 seconds. This setting should be set, depending on the application and the length of time it takes for the conveyor to reach its normal operating RPM. This time delay takes effect upon power-up of the model CMS after shutdown. AC power to the model CMS must be interrupted for timer to be reset. This delay only effects start-up, avoiding nuisance star-up alarms.
D. TROUBLESHOOTING

1. PROBLEMS & SOLUTIONS

<table>
<thead>
<tr>
<th>PROBLEM:</th>
<th>SOLUTION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit not functioning; no pulses from yellow LED</td>
<td>Check power supply and voltage. Make sure input shaft is turning: yellow LED flashing. Clean or polish disk to increase reflectivity. Replace disk if bent or distorted. Circuit board may be too close to disk: shim electronics board with 1 small washer on each standoff. If shaft has been forced into housing, disk will be too close to sensor: contact factory for repair estimate.</td>
</tr>
<tr>
<td>Input shaft does not spin freely; shaft may be damaged</td>
<td>Return to factory for repair.</td>
</tr>
<tr>
<td>Alarm sounds when equipment is started.</td>
<td>Start-up delay setting may be too short: increase if needed. Check for proper connections between alarm and relay. AC power to CMS must be interrupted for alarm to reset.</td>
</tr>
<tr>
<td>Alarm does not sound when expected.</td>
<td>Check power supply. Check for proper connections between alarm and relay.</td>
</tr>
<tr>
<td>Equipment is not shut off when expected.</td>
<td>Check power supply. Check for proper connections between control circuit and relay.</td>
</tr>
<tr>
<td>Yellow LED is on steady with rotation.</td>
<td>Electronics exposed to outdoor infrared (sun) light: install cover or shield unit during calibration.</td>
</tr>
<tr>
<td>Green LED changes state yet relay contacts do not transfer.</td>
<td>Relay contacts damaged or closed: replace electronics board.</td>
</tr>
<tr>
<td>Relay takes a long time to change state at very low speeds.</td>
<td>Very slow speeds can result in long response to changes: Use a higher speed range if possible. Increase shaft speed with belt or chain drive. Use highest range that includes alarm speed needed. Consult factory.</td>
</tr>
<tr>
<td>Relay contacts do not switch as expected</td>
<td>Relay contacts are labeled in alarm (no motion) state.</td>
</tr>
<tr>
<td>Vibration is causing false trips.</td>
<td>Mount unit separately from vibrating machinery and drive with belt or chain.</td>
</tr>
</tbody>
</table>
2. FACTORY ASSISTANCE

If assistance is needed to locate difficulties with a unit or you would like information about alternate control devices, please call the factory at 1-800-233-3233.

To help solve a problem quickly, please have as much of the following information as possible when you make your call:

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Date Purchased</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brief Application Information</td>
<td>Brief Description of the Problem</td>
</tr>
</tbody>
</table>

EQUIPMENT SHIPPED BACK TO THE FACTORY WITHOUT PROPER AUTHORIZATION WILL BE REFUSED AND RETURNED AT THE SHIPPER'S EXPENSE.

E. MOUNTING DIMENSIONS

FIGURE 5

FIGURE 6
FIGURE 7

<table>
<thead>
<tr>
<th>SHAFT DIA</th>
<th>"A"</th>
<th>"B"</th>
<th>"C"</th>
<th>"D"</th>
<th>"E"</th>
<th>"F"</th>
<th>PART NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.44</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>311</td>
</tr>
<tr>
<td>1.39</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>312</td>
</tr>
<tr>
<td>1.29</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>313</td>
</tr>
</tbody>
</table>

FIGURE 8

DRILL Ø17/32" [13mm] X 175° [44mm] DEEP (MIN)
TAP 5/8"-11 NC R.H. THREAD X 138° [35mm] DEEP

NOTE: WHEN THREADED STUB SHAFT (PART NO. 303) IS USED, IT IS RECOMMENDED THAT THE LOCATION OF THE STUB BE IN THE END OF THE SHAFT THAT ROTATES COUNTER-CLOCKWISE. THIS ALLOWS THE THREADS TO CONTINUE BEING UNDER A CONSTANT FASTENING TORQUE WHILE THE SHAFT TURNS. IF THE ROTATION IS CLOCKWISE OR THE SHAFT IS FOR REVERSING TYPE SERVICE, MAKE SURE THE JAM NUT IS LOCKED TIGHT AGAINST THE SHAFT.